
All types and type members in C# have an accessibility level and access modifiers are for
controlling where they can be used from.

Caller's
location public protected

internal protected internal private
protected private

Within the
class ✔️️ ✔️️ ✔️️ ✔️️ ✔️️ ✔️️

Derived class
(same
assembly)

✔️️ ✔️️ ✔️️ ✔️️ ✔️️ ❌

Non-derived
class (same
assembly)

✔️️ ✔️️ ❌ ✔️️ ❌ ❌

Derived class
(diff.
assembly)

✔️️ ✔️️ ✔️️ ❌ ❌ ❌

Non-derived
class (diff.
assembly)

✔️️ ❌ ❌ ❌ ❌ ❌

UdonSharp 1.x supports all access modifiers for the source C# scripts to allow for better design of
larger frameworks, so we can use them all just like we would with native C#.

Access Modifiers

What Are Access Modifiers?

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/access-modifiers

What Access Modifiers Should I Use?

Rule of thumb: Keep the access modifiers as strict as possible.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers


Creators who may be new to C# development standards often expose everything in their classes
by leaving fields and methods on public, which in case of prefab distribution can lead to confusion.

Example 1 - Fields | Public vs Private + [SerializeField]

Simply setting the access modifier of a field to public is the easiest way of making it accessible
in the Unity Editor, but it also exposes it in other scripts, which may be unwanted behavior.

We can change the access modifier of the field to private and add an attribute, 
[SerializeField]. This will result in identical behavior on the inspector, but limits the scope of
the field to that class only.

public bool publicField;

[SerializeField]

private bool privateSerializedField;

Common Mistakes

Revision #1
Created 4 August 2022 16:02:35 by Varneon
Updated 7 November 2023 07:36:01 by Varneon


