
Basic information that everyone should be aware of when developing with UdonSharp

Access Modifiers
Attributes
Namespaces
Assembly Definitions

Fundamentals

All types and type members in C# have an accessibility level and access modifiers are for
controlling where they can be used from.

Caller's
location public protected

internal protected internal private
protected private

Within the
class ✔️️ ✔️️ ✔️️ ✔️️ ✔️️ ✔️️

Derived class
(same
assembly)

✔️️ ✔️️ ✔️️ ✔️️ ✔️️ ❌

Non-derived
class (same
assembly)

✔️️ ✔️️ ❌ ✔️️ ❌ ❌

Derived class
(diff.
assembly)

✔️️ ✔️️ ✔️️ ❌ ❌ ❌

Non-derived
class (diff.
assembly)

✔️️ ❌ ❌ ❌ ❌ ❌

UdonSharp 1.x supports all access modifiers for the source C# scripts to allow for better design of
larger frameworks, so we can use them all just like we would with native C#.

Access Modifiers
What Are Access Modifiers?

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/access-modifiers

What Access Modifiers Should I Use?

Rule of thumb: Keep the access modifiers as strict as possible.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers

Creators who may be new to C# development standards often expose everything in their classes
by leaving fields and methods on public, which in case of prefab distribution can lead to confusion.

Example 1 - Fields | Public vs Private + [SerializeField]

Simply setting the access modifier of a field to public is the easiest way of making it accessible
in the Unity Editor, but it also exposes it in other scripts, which may be unwanted behavior.

We can change the access modifier of the field to private and add an attribute,
[SerializeField]. This will result in identical behavior on the inspector, but limits the scope of
the field to that class only.

public bool publicField;

[SerializeField]

private bool privateSerializedField;

Common Mistakes

Attributes are "markers" or "tags" for associating metadata with code in a declarative way. They
can be used to tell the Unity Editor, C# compiler, or even our own scripts how to treat certain
classes, fields, methods, and so on.

Attributes are declared right before their target and are always wrapped in brackets:

Attributes
What are attributes?

https://docs.unity3d.com/Manual/Attributes.html

using JetBrains.Annotations;

using System.Runtime.CompilerServices;

using UdonSharp;

using UnityEngine;

using UnityEngine.Serialization;

using Varneon.VUdon.Editors;

using Varneon.VUdon.Noclip.Abstract;

using Varneon.VUdon.Noclip.Enums;

using VRC.SDKBase;

using VRC.Udon.Common;

[assembly: InternalsVisibleTo("Varneon.VUdon.Noclip.Editor")]

namespace Varneon.VUdon.Noclip

{

 [SelectionBase]

 [DefaultExecutionOrder(-1000000000)]

 [AddComponentMenu("VUdon/Noclip")]

 [DisallowMultipleComponent]

 [HelpURL("https://github.com/Varneon/VUdon-Noclip/wiki/Settings")]

 [UdonBehaviourSyncMode(BehaviourSyncMode.None)]

 public partial class Noclip : UdonSharpBehaviour

 {

 [FoldoutHeader("Options", "Options that can be edited before build and in-game")]

https://docs.unity3d.com/Manual/Attributes.html

There are several quality of life attributes that everyone should know and use, and here are most
of them:

These attributes can be used on fields, primarily to alter their appearance in the inspector.

 [SerializeField]

 [Tooltip("Method for triggering the noclip mode")]

 private NoclipTriggerMethod noclipTriggerMethod = NoclipTriggerMethod.DoubleJump;

 [SerializeField]

 [FieldLabel("Toggle Threshold (s)")]

 [Tooltip("Time in which jump has to be double tapped in order to toggle noclip")]

 [FieldRange(0.1f, 1f)]

 private float toggleThreshold = 0.25f;

 [SerializeField]

 [FieldLabel("Speed (m/s)")]

 [Tooltip("Maximum speed in m/s")]

 [Min(1f)]

 [FormerlySerializedAs("velocity")]

 private float speed = 15f;

 [PublicAPI("Sets noclip enabled")]

 public void _SetNoclipEnabled(bool enabled)

 {

 SetNoclipEnabled(enabled);

 }

#if UNITY_EDITOR && !COMPILER_UDONSHARP

 [UsedImplicitly]

 [UnityEditor.Callbacks.PostProcessScene(-1)]

 private static void InitializeOnBuild() { }

#endif

 }

}

What attributes should I know about?

Field Attributes

[Range] Restrict a float or int variable to a specific range

[Min] Restrict a float or int variable to a specific minimum value

[Header] Add a space and a header above a field in inspector

[TextArea] Make string field height-flexible and scrollable

[ColorUsage] Configure Color field to support HDR and/or alpha

[GradientUsage] Configure Gradient field's color space and HDR

[Space] Add a space above a field in inspector

[SerializeField] Force Unity to serialize a private field

[HideInInspector] Hide a variable from the inspector

[Tooltip] Display a text in inspector when hovering over a field

[NonSerialized]
Prevent variable from being serialized (also hides from
inspector)

[NonReorderable]
Disable default reorderability in new array and list fields (
Unity 2020.2+)

[FormerlySerializedAs]
Preserve original serialized value of a field when renaming
it

These attributes can be used on classes.

[UdonBehaviourSyncMode]
Enforce a synchronization mode of an
UdonSharpBehaviour

[DefaultExecutionOrder]
Specify the execution order of update loops in relation to
other UdonSharpBehaviours

[RequireComponent]
Add a component automatically to the same object and
prevent its removal

[DisallowMultipleComponent]
Prevent multiple instances of the component from being
added to the same object

[AddComponent]
Specify the path to this component in the "Add
Component" menu

[ExcludeFromPreset] Prevent creation of presets from instances of the class

Class Attributes

https://docs.unity3d.com/ScriptReference/RangeAttribute.html
https://docs.unity3d.com/ScriptReference/MinAttribute.html
https://docs.unity3d.com/ScriptReference/HeaderAttribute.html
https://docs.unity3d.com/ScriptReference/TextAreaAttribute.html
https://docs.unity3d.com/ScriptReference/ColorUsageAttribute.html
https://docs.unity3d.com/ScriptReference/GradientUsageAttribute.html
https://docs.unity3d.com/ScriptReference/SpaceAttribute.html
https://docs.unity3d.com/ScriptReference/SerializeField.html
https://docs.unity3d.com/ScriptReference/HideInInspector.html
https://docs.unity3d.com/ScriptReference/TooltipAttribute.html
https://docs.unity3d.com/ScriptReference/NonSerialized.html
https://docs.unity3d.com/ScriptReference/NonReorderableAttribute.html
https://docs.unity3d.com/ScriptReference/Serialization.FormerlySerializedAsAttribute.html
https://udonsharp.docs.vrchat.com/udonsharp#udonbehavioursyncmode
https://udonsharp.docs.vrchat.com/udonsharp#defaultexecutionorder
https://docs.unity3d.com/ScriptReference/RequireComponent.html
https://docs.unity3d.com/ScriptReference/DisallowMultipleComponent.html
https://docs.unity3d.com/ScriptReference/AddComponentMenu.html
https://docs.unity3d.com/ScriptReference/ExcludeFromPresetAttribute.html

[SelectionBase]
Mark the GameObject as a selection base object for Scene
View picking

[Icon]
Specify an icon for a MonoBehaviour or ScriptableObject (
Unity 2021.3+)

These attributes can be used on methods.

[ContextMenu] Add a command to the Component's context menu

[Obsolete] Mark an element to be no longer in use

[PublicAPI]
Mark publicly available API which should not be removed
and treated as used

[UsedImplicitly]
Indicates that the marked symbol is used implicitly (e.g.
via reflection, in external library)

[NotNull]
Indicates that the value of the marked element can never
be null

[CanBeNull]
Indicates that the value of the marked element could be
null sometimes

These attributes don't fall into the categories above, but are extremely useful and commonly used.

This attribute allows you to make your Runtime assembly's internal members visible to the Editor
assembly.

1. Create a new C# file called `AssemblyInfo.cs` into your Runtime folder
2. Add the following content inside the file:

using System.Runtime.CompilerServices;

[assembly: InternalsVisibleTo("YOUR_EDITOR_ASSEMBLY_NAME_HERE")]

Method Attributes

Common Attributes

Other Attributes

[InternalsVisibleTo]

Example of this attribute being used: Udonity's AssemblyInfo.cs

https://docs.unity3d.com/ScriptReference/SelectionBaseAttribute.html
https://docs.unity3d.com/ScriptReference/IconAttribute.html
https://docs.unity3d.com/ScriptReference/ContextMenu.html
https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute?view=net-7.0
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html#PublicAPIAttribute
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html#UsedImplicitlyAttribute
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html#NotNullAttribute
https://www.jetbrains.com/help/resharper/Reference__Code_Annotation_Attributes.html#CanBeNullAttribute
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.internalsvisibletoattribute?view=net-7.0
https://github.com/Varneon/VUdon-Udonity/blob/main/Packages/com.varneon.vudon.udonity/Runtime/AssemblyInfo.cs

Mark a ScriptableObject-derived type to be automatically listed in the Assets/Create submenu.

Learn more about ScriptableObjects here.

Use this attribute on enum value declarations to change the display name shown in the Inspector.

[CreateAssetMenu]

// menuName: Path to the menu item

// fileName: Default name of the new file

// order: Priority of the menu item (100 is often reasonble)

[CreateAssetMenu(menuName = "VUdon - Vehicles/Data Presets/Car Spec Sheet", fileName =

"NewCarSpecSheet.asset", order = 100)]

public class CarSpecSheet : ScriptableObject { }

[InspectorName]

public enum ColorDisplayMode

{

 [InspectorName("RGB 0-255")]

 RGB255,

 [InspectorName("RGB 0-1.0")]

 RGB1,

 HSV

}

https://docs.unity3d.com/ScriptReference/ScriptableObject.html
https://vrclibrary.com/wiki/books/varneons-unity-development-handbook/page/scriptable-objects
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html
https://docs.unity3d.com/ScriptReference/InspectorNameAttribute.html

In order to declare your own namespace for a project, all you have to do is encapsulate your class
in curly brackets, lead by the namespace keyword and your desired namespace.

Namespaces
What are namespaces?

Namespaces are a fundamental feature in C# and are used to control the scope of your
projects.

When developing anything with UdonSharp, declaring your own namespaces should be one
of the first steps of your development process.

If a creator doesn't declare their own namespace for their UdonSharpBehaviours, all of their
classes will be exposed to the entire project by default and may cause misunderstandings
and confusion, especially amongst beginners.

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/namespaces

How to declare a namespace in
UdonSharp?

namespace Varneon.ExamplePrefab

{

	public class ExampleClass : UdonSharpBehaviour

 {

 }

}

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/namespaces

In order to access classes in other namespaces, all you have to do is use the using keyword to
extend the scope of your project to that other namespace

Define clear scope for your project
Prevent classes and enums from leaking to the default project scope

It is highly recommended to always have the first element of the namespace be your own
name (or brand, if you have one).

DO NOT use anyone else's name for the namespace unless you are working on the project
for them!

How to access classes in other
namespace?

using Varneon.ExamplePrefab;

namespace Varneon.OtherExamplePrefab

{

	public class OtherExampleClass : UdonSharpBehaviour

 {

 	private ExampleClass exampleClass;

 }

}

Usage of namespaces makes it clear who is the developer of the project and makes it often
easier to find specific project's scope

TLDR - Why use namespaces?

https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1659620217781.png

Assembly Definitions
Assembly Definitions can be overwhelming for beginners, but should be essential knowledge
for developers of widely used prefabs made with UdonSharp.

I have just released a new Unity Editor extension for automating assembly definition
generation: Experimental Automatic Assembly Definition Generator by Varneon | GitHub

What are assembly definitions?
Assembly Definitions and Assembly References are assets that you can create to organize
your scripts into assemblies.

https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html

Why use assembly definitions?
Usage of assembly definitions promotes modularity and assists with declaring a clear scope
for the dependencies

Assembly definitions support Define Constraints: only compile the assembly if specific
Scripting Define Symbol is present (e.g. if you only want the assembly to compile if the
symbol "UDONSHARP" is present, you can add it as a constraint)

How to use assembly definitions with U#
1.x?

https://github.com/Varneon/AssemblyDefinitionGenerator
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html

1) Create Assembly Definition

Name the Assembly Definition file clearly to indicate the developer and the project
(Recommended to use similar format to namespaces)

Right after creating the assembly, you may notice errors appearing in your console, this
is because the assemblies of the scripts that our scripts are referencing, aren't defined in
the assembly definition

2) Define the assembly references

Adding UdonSharp.Runtime assembly as a reference allows us to reference the scripts
contained in that assembly from our own scripts

U# requires a custom U# Assembly Definition to be present alongside with the main
Assembly Definition when U# scripts are in said assembly

https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661019953736.png
https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661020045130.png
https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661020225203.png

If you need to access common VRChat's classes, such as VRCPickup or UdonBehaviour,
other common assemblies to reference are VRC.Udon and VRC.SDK3

Disabling the option "Use GUIDs" is recommended, since the GUIDs may change
over time

Right after clicking "Apply" on the assembly definition the scripts will attempt to compile,
and you will most likely see the following error in the console. We will fix this next.

3) Create U# Assembly Definition

https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661020467667.png
https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661021023795.png

Make sure to name the U# Assembly Definition file identically to the main assembly
definition's name!

As the last step, assign the main assembly definition as the "Source Assembly" on the U#
assembly definition

https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661021108017.png
https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661021161988.png
https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661021296415.png

Now all of your UdonSharpBehaviours should compile successfully and you can continue
the development

If UdonSharp still throws an error related to the scripts not being a part of a U#
assembly, try reimporting the U# assets and scripts in the folder.

https://vrclibrary.com/wiki/uploads/images/gallery/2022-08/image-1661021928118.png

