
As many of you may already know, Udon can be pretty slow, but I was curious to know what really
slows it down, so I made a world called "Udon Benchmark" to benchmark it, the world can be found
here https://vrchat.com/home/world/wrld_174475ad-6f8e-444d-8b02-67cd13e13b74
In that world I benchmarked :

The execution time between C# and U#
As many C# features I could possibly think off, for instance for-loops, function calls,
recursive functions etc. and compare their execution times.

Each script got executed 50 times, and the results got averaged.

The values bellow shows a summary of all execution times, I'll explain each line in the next
chapter, if you want you can paste those values into a .CSV file, or generate your own .CSV file in
my "Udon Benchmark" world that features a CSV exporter.

B1 : execution time of the Benchmark1 method
B2 : execution time of the Benchmark2 method
SD : Standard deviation, which shows the amount of variation or dispersion of a set of
values https://en.wikipedia.org/wiki/Standard_deviation 
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All results I'll share are the results I got from my world, you'll probably get different results
on your hardware.

Since VRChat keeps improving Udon, many results I'll share will probably be out of date in
the future, and I cannot promise that I'll keep those values up-to-date.

https://vrchat.com/home/world/wrld_174475ad-6f8e-444d-8b02-67cd13e13b74
https://en.wikipedia.org/wiki/Standard_deviation
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