
As many of you may already know, Udon can be pretty slow, but I was curious to know what really
slows it down, so I made a world called "Udon Benchmark" to benchmark it, the world can be found
here https://vrchat.com/home/world/wrld_174475ad-6f8e-444d-8b02-67cd13e13b74
In that world I benchmarked :

The execution time between C# and U#
As many C# features I could possibly think off, for instance for-loops, function calls,
recursive functions etc. and compare their execution times.

Each script got executed 50 times, and the results got averaged.

The values bellow shows a summary of all execution times, I'll explain each line in the next
chapter, if you want you can paste those values into a .CSV file, or generate your own .CSV file in
my "Udon Benchmark" world that features a CSV exporter.

B1 : execution time of the Benchmark1 method
B2 : execution time of the Benchmark2 method
SD : Standard deviation, which shows the amount of variation or dispersion of a set of
values https://en.wikipedia.org/wiki/Standard_deviation 

Version
1.1 -
Number
o
iterations
: 50

B1 (ms) B1 min
(ms)

B1 max
(ms) B1 SD B2 (ms) B2 min

(ms)
B2 max
(ms) B2 SD B1/B2

C# vs
U# (Part
1)

684.576
946 661.567 804.889

1

21.4634
2736309
57

Introduction
Last update : February 2023

All results I'll share are the results I got from my world, you'll probably get different results
on your hardware.

Since VRChat keeps improving Udon, many results I'll share will probably be out of date in
the future, and I cannot promise that I'll keep those values up-to-date.

https://vrchat.com/home/world/wrld_174475ad-6f8e-444d-8b02-67cd13e13b74
https://en.wikipedia.org/wiki/Standard_deviation


C# vs
U# (Part
2)

972.711
61

928.640
2

1119.34
84

35.2456
4491391
38

For-loop
overhead
test

79.9035
44 76.9296 94.951

3.70946
6462183
48

35.3885
96 33.3341 53.8828

3.81011
4100651
58

2.25788
9632015
92

Recursiv
e vs
iterative

532.552
632

519.595
3

577.749
7

12.9280
7880589
29

79.8591
74 77.0833 93.3914

3.69170
5085773
24

6.66864
6885829
3

Builtin
functions
vs
calculati
ng
somethin
g
manually
(part 1)

166.699
154

161.632
8

189.954
2

5.54937
9051577
21

92.6784
34 88.3964 125.423

8

6.55232
8135055
81

1.79868
3326910
77

Builtin
functions
vs
calculati
ng
somethin
g
manually
(part 2)

60.5831
9 57.8675 78.6651

3.79625
2095172
29

63.0346
32 60.8127 76.2538

2.81868
1264097
8

0.96110
9600830
223

Function
overhead
test

57.0363
8 54.4904 65.0939

2.92755
8771194
87

66.2072
2 63.0205 81.5224

3.63724
2050565
24

0.86148
2780880
997

GetComp
onent<>
()

60.0576 58.0447 69.7074
2.32634
4795596
73

111.367
394

106.522
1

122.628
8

3.81778
2588959
72

0.53927
4538470
389

Calling
methods
from a
separate
script

236.120
418

228.250
6

261.777
8

7.89126
4628529
19

305.513
994

297.665
1 333.578

7.45977
1742122
14

0.77286
2856161
017

Caching
Networki
ng.Local
Player

15.0974
48 14.5741 18.5321

0.78361
6316634
614

18.2517
28 17.7745 26.3932

1.23896
4471329
18

0.82717
9103260
798

The "ref"
keyword

14.8596
24 13.9105 22.6906

1.79010
5857155
94

14.1711
58 13.4693 18.1117

1.23886
3504360
35

1.04858
2197728
65

Revision #8
Created 14 February 2023 19:16:31 by MyroP
Updated 16 February 2023 20:35:17 by MyroP


