
In this chapter I am executing scripts in C# and U#, and compare execution times

U# vs C#
For loop
Recursive vs iterative
Builtin functions vs calculating something manually
Function overhead test
GetComponent<>()
Calling methods from a separate script
Caching Networking.LocalPlayer
The "ref" keyword
400 Update() calls vs one Update() call iterating 400 times

Let's run some
benchmarks!

U# is noticeably slower than regular C#, to benchmark it I decided to execute two scripts in U#
and C#, one calculates the n-th Fibonacci number, the second one generates a maze.

To make those tests a bit fairer, I disable the C# compiler optimization, since the U# compiler does
not optimize your scripts during compilation.

For this test I executed a script that calculates the n-th Fibonacci number, the Fibonacci method
looks like this

Since FibonacciRecursive is a recursive function, the [RecursiveMethod] attribute need to be added.

This is really a horrible way to calculates the n-th Fibonacci number because certain method calls
get called multiple times, and the number of method calls rise very quickly :

Fibonacci(1) calls the Fibonacci method 1 time
Fibonacci(2) calls the Fibonacci method 3 times
Fibonacci(10) calls the Fibonacci method 177 times
Fibonacci(22) calls the Fibonacci method 57313 time

So I felt like this test is a great way to determine how well U# performs this task, and I executed
Fibonacci(22) in C# and U#

U# vs C#

Recursive functions

[RecursiveMethod]

public int FibonacciRecursive(int n)

{

	if (n <= 1)

		return n;

	else

		return FibonacciRecursive(n - 1) + FibonacciRecursive(n - 2);

}

C# time : 0.189 ms
U# time : 684.577 ms
U# was 3629 times slower!

Maze generator

In my "Circuit Master" world, I wrote a custom maze generator algorithm, which I unfortunately
cannot share because the algorithm is about 1600 lines long.

I decided to compare the execution time of that algorithm because that would be a more realistic
test, it uses pretty much everything (Unity functions, custom list implementations, for-loops, bit
manipulations etc.).

The algorithm does not call any recursive functions, but implements a custom stack made out of a
ring buffer (ttps://en.wikipedia.org/wiki/Circular_buffer.) which is a very fast container to build and
read a stack

Based on the previous results, we can see that U# is much slower than regular C#, so keeping your
code optimized is even more important in U#!

C# time : 1.609 ms
U# time : 972.712 ms
U# was 604 times slower!

https://en.wikipedia.org/wiki/Circular_buffer

For this test I was curious to see how well Udon executes for-loops, and the results I got were really
unexpected.

I executed two methods Benchmark1 and Benchmark2 and compared their execution time.

Both methods execute a for-loop, and both of them go from 0 to 50000, except that the second
method has the step set to 5 and each loop executes 5 instructions instead of 1. So both methods
do the exact same thing, except that the second one only loops 10000 times instead of 50000.

For loop

public override void Benchmark1()

{

	int number = 0;

	for (int i = 0; i < 50000; i++)

	{

		number++;

	}

}

public override void Benchmark2()

{

	int number = 0;

	for (int i = 0; i < 50000; i+=5)

	{

		number++;

		number++;

		number++;

		number++;

		number++;

	}

}

B1 : 79.903 ms (2.2 times slower)
B2 : 35.388 ms

This benchmark surprised me the most, it seems like the for-loop has a pretty noticeable
overhead

For this test I was curious to see how well Udon executes recursive methods, in the previous test I
already compared the execution time of recursive functions in U# and C#, but here I wanted to
compare the execution time between a recursive function and an iterative function

I executed two methods Benchmark1 and Benchmark2 and compared their execution time.

Recursive vs iterative

[RecursiveMethod]

private int Recursive(int n)

{

	if (n <= 0)

		return 0;

	else

		return 1 + Recursive(n - 1);

}

private int NotRecursive(int n)

{

	int ret = 0;

	while (n > 0)

	{

		ret++;

		n--;

	}

	return ret;

}

public override void Benchmark1()

{

	Recursive(50000);

}

public override void Benchmark2()

{

	NotRecursive(50000);

}

Benchmark1 calculates a value recursively, Benchmark2 calculates it iteratively.

B1 : 532.552 ms (6.6 times slower)
B2 : 79.8591 ms

Recursive functions are much slower, they should be avoided!
The reason is that Udon builds a custom stack to save the variables of each function call,
otherwise the next function call would override the variables from the previous function call.
Implementing such a stack is performance heavy.

Let's say you want to calculate the distance between two vectors.

Some of you would probably write something like this :

Others might write something like this (which is how Unity implemented the Distance method) :

In regular C#, that wouldn't make a difference, because C# code is compiled and both examples
above would probably get compiled into something similar.

That's not the case in Udon, each line of code has an execution time because Udon is an
interpreted programming language, so the first example would call a compiled C# function (fast),
the second example would calculate the distance in Udon (slow)

This benchmark is mostly to show you that is is better to use builtin function instead of calculating
something manually. Before implementing a function, make sure that the function hasn't already
been implemented yet, the Mathf class implements many math functions!

I executed two methods Benchmark1 and Benchmark2 and compared their execution time.

Builtin functions vs
calculating something
manually

distance = Vector3.Distance(a,b);

float num = a.x - b.x;

float num2 = a.y - b.y;

float num3 = a.z - b.z;

distance = (float)System.Math.Sqrt(num * num

	+ num2 * num2

	+ num3 * num3);

private int RandomVal()

{

	return Random.Range(0, 100);

}

Both methods calculate distances, but the second method calls the builtin Distance method.

public override void Benchmark1()

{

	float distance;

	for (int i = 0; i < 10000; i++)

	{

		Vector3 a = new Vector3(RandomVal(), RandomVal(), RandomVal());

		Vector3 b = new Vector3(RandomVal(), RandomVal(), RandomVal());

			float num = a.x - b.x;

		float num2 = a.y - b.y;

		float num3 = a.z - b.z;

		distance = (float)System.Math.Sqrt(num * num

			+ num2 * num2

			+ num3 * num3);

	}

}

public override void Benchmark2()

{

	float distance;

	for (int i = 0; i < 10000; i++)

	{

		Vector3 a = new Vector3(RandomVal(), RandomVal(), RandomVal());

		Vector3 b = new Vector3(RandomVal(), RandomVal(), RandomVal());

			distance = Vector3.Distance(a,b);

	}

}

B1 : 166.699 ms (1.79 times slower)
B2 : 92.678 ms

Use builtin functions as much as you can!

For this test I was curious to see the overhead of a function call

I executed two methods Benchmark1 and Benchmark2 and compared their execution time.

Both methods do the same thing, setting a variable j to 0, except that Benchmark2 calls a function.

Function overhead test

private void Func()

{

	int j = 0;

}

public override void Benchmark1()

{

	for (int i = 0; i < 50000; i++)

	{

		int j = 0;

	}

}

public override void Benchmark2()

{

	for (int i = 0; i < 50000; i++)

	{

		Func();

	}

}

B1 : 57.036 ms
B2 : 66.207 ms (1.16 times slower)

There's a little difference, calling a function has a little overhead, but nothing too bad.
So in theory, putting everything into a single function is more performant (But obviously that
would be a bad programming advice)

Many of you may already know that calling GetComponent is pretty expensive in Unity.

But how expensive is it in Udon? Let's see!

I executed two methods Benchmark1 and Benchmark2 and compared their execution time.

Both methods do the same thing, except that Benchmark2 calls GetComponent inside a for-loop

GetComponent<>()

public override void Benchmark1()

{

	Labyrinth labyrinth = GetComponent<Labyrinth>();

	for (int i = 0; i < 1000; i++)

	{

		labyrinth.InitGrid(2, 2);

	}

}

public override void Benchmark2()

{

	for (int i = 0; i < 1000; i++)

	{

		Labyrinth labyrinth = GetComponent<Labyrinth>();

		labyrinth.InitGrid(2, 2);

	}

}

B1 : 60.0576 ms
B2 : 111.367 ms (1.85 times slower)

The difference is very noticeable, I'ld hightly recommend to call GetComponent<>() only
once, for instance in Start()

Let's say you have script A that accesses a method from script B.

Would it be more performant to merge script A and B together? Let's see!

Calling methods from a
separate script

public Fibonacci FibonacciInstance;

[RecursiveMethod]

private int FibonacciRecursive(int n)

{

	if (n <= 0)

		return 0;

	else

		return 1 + FibonacciRecursive(n - 1);

}

public override void Benchmark1()

{

	for (int i = 0; i < 10000; i++)

	{

		FibonacciRecursive(2);

	}

}

public override void Benchmark2()

{

	for (int i = 0; i < 10000; i++)

	{

		FibonacciInstance.FibonacciRecursive(2);

	}

}

Both methods do the same thing :

Benchmark1 calls FibonacciRecursive in the same script
Benchmark2 calls FibonacciRecursive from a separate script

B1 : 236.120 ms
B2 : 305.513ms (1.29 times slower)

So yes, calling a method from a separate script affects the performance.

Some programmers like to cache the local player for later use, for instance by adding a private
member private VRCPlayerAPI _localPLayer; then setting the local player _localPlayer =
Networking.LocalPlayer; in Start()

Let's see how it affects the performance :

Caching
Networking.LocalPlayer

public override void Benchmark1()

{

	VRCPlayerApi localPlayer = Networking.LocalPlayer;

	for (int i = 0; i < 10000; i++)

	{

		string name = localPlayer.displayName;

	}

}

public override void Benchmark2()

{

	for (int i = 0; i < 10000; i++)

	{

		string name = Networking.LocalPlayer.displayName;

	}

}

B1 : 15.097 ms
B2 : 18.251 ms (1.20 times slower)

Caching the local player can improve the performance if the local player is used multiple
times in the script.

This does not only apply to Networking.LocalPlayer! for instance if you need to access the
Transform of a particular GameObject it might be interesting to cache the Transform for later use:

Transform myTransform;

void Start()

{

 myTransform = myGameObject.transform;

}

void Update()

{

 //this is more performant than "myGameObject.transform.position"

 //especially if the transform is used multiple times, like in this Update()

 myTransform.position = newPosition;

}

U# now supports the "ref" keyword, which is really cool! For those who don't know what the "ref"
keyword does, I'll link the C# documentation here : https://learn.microsoft.com/en-
US/dotnet/csharp/language-reference/keywords/ref

But does it affect the performance in U#?

Both methods do the same thing, setting a variable a to 1, but the first script passes a reference.

The "ref" keyword

private void FunctionRef(ref int a)

{

	a = 1;

}

private int FunctionRet(ref int a)

{

	return 1;

}

public override void Benchmark1()

{

	for (int i = 0; i < 50000; i++)

	{

		int a = 0;

 	FunctionRef(ref a);

	}

}

public override void Benchmark2()

{

	for (int i = 0; i < 50000; i++)

	{

		int a = 0;

 	a = FunctionRet();

	}

}

https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/keywords/ref
https://learn.microsoft.com/en-US/dotnet/csharp/language-reference/keywords/ref

B1 : 14.859 ms (1.04 times slower)
B2 : 14.171 ms

Good news! The difference is really negligible, you can safely use "ref" without worrying
about performance impacts.

What would be more performant in Udon?

400 GameObjects executing some code every frame with an Update event :

 One GameObject with one Update event, but that Update event iterates though 400
GameObjects

400 Update() calls vs one
Update() call iterating 400
times

public class EveryFrame : UdonSharpBehaviour

{

	void Update()

	{

		transform.position = Vector3.zero;

	}

}

public class EveryFrameHandler : UdonSharpBehaviour

{

	public EveryFrameCustomUpdate[] ArrayElements; //this array contains 400 elements

	void Update()

	{

		foreach(var el in ArrayElements)

		{

			el.CustomUpdate();

		}

	}

}

public class EveryFrameCustomUpdate : UdonSharpBehaviour

{

I benchmarked it using the Udon Profiler by Merlin :
https://gist.github.com/MerlinVR/2da80b29361588ddb556fd8d3f3f47b5

There are mostly two reasons explaining this difference :

For-loops have a noticeable overhead, which I benchmarked here :
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/for-
loop
Executing methods from a separate script also have a noticeable overhead :
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/calling-
methods-from-a-separate-script

Out of curiosity, I also replaced the for-loop with 400 lines of code I generated :

And I got 1.65ms per frame in average.

	public void CustomUpdate()

	{

		transform.position = Vector3.zero;

	}

}

First example : 0.90ms per frame in average
Second example : 2.06ms per frame in average

// ...

// ArrayElements[0~114].CustomUpdate();

ArrayElements[115].CustomUpdate();

ArrayElements[116].CustomUpdate();

ArrayElements[117].CustomUpdate();

ArrayElements[118].CustomUpdate();

ArrayElements[119].CustomUpdate();

ArrayElements[120].CustomUpdate();

// ArrayElements[120~399].CustomUpdate();

// ...

https://gist.github.com/MerlinVR/2da80b29361588ddb556fd8d3f3f47b5
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/for-loop
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/for-loop
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/calling-methods-from-a-separate-script
https://vrclibrary.com/wiki/books/udon-benchmarking-and-performance-tests/page/calling-methods-from-a-separate-script

