
Here's some things which I consider good practice when writing U# code, in no particular order.
These suggestions are somewhat personal, so please let me know what you think in the comments
below the article! ❤️

By default, the sync mode of an UdonBehaviour is chosen in the Unity inspector. Which is fine, until
you accidently set it to the wrong sync mode. Yikes!

Instead, use U#'s UdonSyncMode attribute to make sure your UdonBehaviour always uses the sync
mode you want.

If you make one of your variables public , it'll be accessible from the Unity inspector. It'll also make
it accessible from any other UdonBehaviour . Most variables aren't accessed outside their own class,
so making variables public makes your classes needlessly messy.

UdonSharp Nitpicks
I hope you enjoy reading this - but keep in mind that this isn't quite finished ✌️

UdonSyncMode

using UdonSharp;

using UnityEngine;

[UdonBehaviourSyncMode(BehaviourSyncMode.Manual)]

public class Foo : UdonSharpBehaviour

{

 // ...

}

This will prevent you from changing the sync mode on different GameObjects reusing the
same U# script.
But... does anyone actually do that? ��

[SerializeField]

https://github.com/MerlinVR/UdonSharp/wiki/UdonSharp#udonsyncmode=

The solution? Keep those variables private instead, and just add [SerializeField] like so:

U# scripts can have long and messy inspectors. Why not make them look nicer with the [Header]
and [Tooltip] attributes?

If you're doing something with Networking.LocalPlayer frequently, consider caching the reference in
start:

... and re-using that reference instead of calling Networking.LocalPlayer directly.

[SerializeField] private string foo;

You can also do the opposite: To hide a public variable from the inspector, use
[HideInInspector].

[Tooltip] and [Header]

[Header("References")]

[Tooltip("Reference to the mirror GameObject.")]

[SerializeField] private GameObject mirror;

[Tooltip("Transform to move the mirror to.")]

[SerializeField] private Transform targetTransform;

Cache your LocalPlayer

private VRCPlayerApi localPlayer;

private void Start()

{

 localPlayer = Networking.LocalPlayer;

}

private void Update()

{

 Debug.Log(localPlayer.GetPosition();

}

https://docs.unity3d.com/ScriptReference/SerializeField.html
https://docs.unity3d.com/ScriptReference/HeaderAttribute.html
https://docs.unity3d.com/ScriptReference/TooltipAttribute.html

When the owner of a script uses RequestSerialization() , all players except the owner will execute
OnDeserialization() . But if you override OnDeserialization() in your script, you can have the
owner call it manually. This is useful if you'd like the owner of the script to execute
OnDeserialization() , to replicate the same behaviour as remote clients.

For example, here is a simple script which the master can use to increase a score variable. The
scoreText is updated for everyone in OnDeserialization .

The approach above works fine for simple scripts. However, if you script has multiple synced
variables, your OnDeserialization() method may become quite large. Consider using
[FieldChangeCallback] with a Property instead. It is similar to the Udon Graph's OnVariableChanged
node. For example:

OnDeserialization() and
[FieldChangeCallback]

Call OnDeserialization as owner

[UdonSynced] private int score;

[SerializeField] private TextMeshProUGUI scoreText;

// The script owner can call IncreaseScore anywhere to increase the score by 1.

public void IncreaseScore()

{

 score++;

 RequestSerialization();

 OnDeserialization()

}

public override void OnDeserialization()

{

 scoreText.text = score.ToString();

}

[FieldChangeCallback] instead of
OnDeserialization()

If you have multiple networked variables, watch out when using [FieldChangeCallback] . When a
[FieldChangeCallback] happens, other networked variables may not be updated yet. In other
words, if your networked variables depend on each other, you may want use OnDeserialization()
instead.

Notably, the owner of the script will not suffer from this issue. If you're seeing no issues as an
object's owner, but outdated variables on remote clients, you may be running into issues with
[FieldChangeCallback] 's execution order!

[UdonSynced, FieldChangeCallback(nameof(Score))] private int score;

private bool Score

{

 get => score;

 set

 {

 score = value;

 scoreText.text = score.ToString();

 }

}

[SerializeField] private TextMeshProUGUI scoreText;

public void IncreaseScore()

{

 Score++;

 RequestSerialization();

}

[FieldChangeCallback] execution order
issues

I've lost a lot of time identifying this issue. Please learn from my mistakes! ��

What else?

There's more I'd like to write about... Let me know if any of these sound interesting! ��

Avoid Update(), use delayed events instead.
Did you know that FixedUpdate() depends on your monitor's refresh rate? Yeah.
Use synced variables, avoid networked events, if you can.
FieldChangeCallback is great.
Name your classes and methods properly.

Revision #4
Created 25 May 2022 22:59:15 by
Updated 20 September 2022 21:29:30 by Admin

