
Sharing some of my experiences and assets with ✨YOU✨

Squat Racing Retrospective
Prefabs

FaxAnalytics
FaxFallDamage

UdonSharp Nitpicks

Fax's Retrospectives
and Prefabs

This is restrospective of my game for the VRCPrefabs valentine's jam 2021.

Overall, I'm quite happy with how Squat Racing turned out! If you've not tried it before, click here
to visit the world.

When I first created squat racing, Nosjo created 3D models and occasionally took a look at my code
- though we mostly worked separately.

Three months later I wanted to improve the project. And to my surprise, it was in a beautiful state.
Comments everywhere. A nice scene hierarchy. No editor warnings. Having someone peek over my

Squat Racing Retrospective

Note: This is somewhat incomplete and was written looong ago. Hope it inspires you
nonetheless!

The Good Stuff ������

Squat Racing なるワールドの動画。
スクワットしてる間カーブする乗り物にのってレースするゲームみたい。
とても足が疲れました������ pic.twitter.com/z5bctYrHhv

— のーざん (@North369jp) February 15, 2021

My entry into the @VRCPrefabs World Jam combines SQUATTING and RACING!
@thenosjo helped with 3D modeling, so join us this weekend for a LOVELY
WORKOUT ❤❤���� pic.twitter.com/aAYSRx4pLH

— Fax (@Faxmashine) February 10, 2021

Devs Together Strong

https://vrchat.com/home/world/wrld_225bb847-9c76-4db4-9f88-5b00f4db3c86
https://vrchat.com/home/world/wrld_225bb847-9c76-4db4-9f88-5b00f4db3c86
https://twitter.com/thenosjo
https://t.co/z5bctYrHhv
https://twitter.com/North369jp/status/1361123388555583489?ref_src=twsrc%5Etfw
https://twitter.com/VRCPrefabs?ref_src=twsrc%5Etfw
https://twitter.com/thenosjo?ref_src=twsrc%5Etfw
https://t.co/aAYSRx4pLH
https://twitter.com/Faxmashine/status/1359627665821556740?ref_src=twsrc%5Etfw

shoulder seems to have affected the way I work in a very positive way - even though it was mostly
a solo project!

Of course it's possible to work cleanly when working solo - but it can be tough to be disciplined
during a game jam. My most recent world, Draw. Guess. Panic?!, shipped with many networking-
related issues. And now, mere weeks later, they seem impossible to fix due to band-aid fixes and
no documentation. Not only did that make the world worse, it was also a bit of a downer.

In 'Draw. Guess. PANIC?!' You better not disconnect, or things might break..!

TL;DR: Collaborating with someone made me work more cleanly.

How do you do an exercise game in VR? Some users like to watch a video and follow along, but I
wanted to create something more interactive.

The simplest thing I could think of was tracking the player's head position and forcing them to
squat. Petey was quick to let me know that Squat Gym does exactly that. With Squat Racing I tried
to utilize that same mechanic and to turn it into a game! With twists, and turns, and all that.

Squatting is easily explained, and everyone know what a race is. "Squat Racing" seems like a
magic phrase that turns a lot of heads. Most players seem to have a good time! Having a low skill
floor and high skill ceiling was great for keeping players motivated.

Creating Squat Racing was relatively simple, so I was able to iterate on my prototypes. Which was
perfect for a game jam!

TL;DR: The concept was simple, engaging and easy to implement.

Simple, Strong Core Idea

https://vrch.at/wrld_beefcafe-feed-abba-face-badbeedecade
https://vrclibrary.com/wiki/uploads/images/gallery/2022-01/image-1643119913364-file-7c6b903d-bc3d-4e9d-97cb-1e3ba730b6ac-2.png
https://twitter.com/PeterJCasaey
https://vrch.at/wrld_dd201c97-22b3-4e50-97f5-1759b9670db9

Most players who play squat racing do a single lap, say they enjoyed it, and leave the world. They
don't try to get a good time, try to do multiple laps or discover the secret bonus-part of the race
track.

The stats: Only around 30% of players who join the world complete a lap. Around 10% of them
attain a solid grasp of the game's mechanics. That's... less than I hoped for. And it became obvious
quickly into the project's development!

Now, on the bright side players say they have a good time! Especially those who take the time to
understand how Squat Racing works. But I seem to have underestimated how difficult it is to learn
the game!

Now, the core rules can be expressed in four sentences:

1. Press both triggers to start racing
2. Stand up straight to go straight
3. Crouch to turn
4. The direction you turn flips after every crouch (left - right - left - right)

The Bad Stuff ��
Clear Goals

https://vrclibrary.com/wiki/uploads/images/gallery/2022-01/image-1643119898931.png

Most players would then proceed to press both triggers, endlessly bump into walls or keep spinning
in a circle. The panic sets in, and they forget the instructions (even though they're right in front of
them!)

What Squat Racing is missing is a safe environment to learn the rules. Players start in a
walled-off area, which is covered in grass to slow them down. But that still meant that players had
to do too many tasks at once. Find the tutorial, read it, try it out, try not accidently move away -
ideally I would have placed players in an endless void to let them try out the mechanics safely.

VR players don't all have wireless headsets. This can cause issues when you have a circular race
track. Doing three laps can take as little as 90 seconds, so playing for 30 minutes twists your cable
20 times.

Here's two things I did to mitigate this:

Put up an in-game poster warning players to not get tangled (seen above)
Turn the track into an 8-loop (added post-launch)

Neither is an ideal solution. And I learned from my mistakes! In Super VR Ball many levels are
arranged to prevent the player from getting tangled. Still - unless wireless headsets become the
norm, keep tethered users in mind!

Tangled cables

In conclusion

https://vrclibrary.com/wiki/uploads/images/gallery/2022-02/image-1643739047949.png

I'd say it went quite well for a two week projects! But it's certainly not without its flaws, and I'm
sure there's untapped potential here. I don't see a lot of fitness games on VRChat, but following my
release of Squat Racing, VRChat created a special row for workout wolds! And a few weeks later,
VRChat held a game jam for racing worlds.

If you'd like to listen to the soundtrack, visit my SoundCloud! And if you like, please leave a
comment below. Be as candid as you can, I'm sure there's something to be learned from any
feedback you might have.

https://itch.io/jam/vrchat-obstacle-jam
https://soundcloud.com/user-649279087/club-twenty-two-2021

Prefabs

Prefabs

This prefab lets you track information about your world! For example:

How many players fall off your world?
Does anyone use my mirror?
Where do they spend their time?
Does anyone press that button you added?

https://drive.google.com/file/d/1giI_RAtmSSXFbKeTxd6OovrGam3Pn1e3/

A prefab for quickly adding analytics to your world
An example scene
A full guide on how to use the prefab inside Unity
UdonSharp scripts for you to tinker with

UdonSharp
A Google Form to send the data to (after installation)
A video player (included in the prefab)

FaxAnalytics

Download

What's included?
This prefab utilizes video players in an undocumented manner. Do not use video player
maliciously, respect the TOS!

Requirements

How does it work?

https://drive.google.com/file/d/1giI_RAtmSSXFbKeTxd6OovrGam3Pn1e3/view?usp=sharing

After installing the prefab, check the top of your Unity window. You should see a new tab named
"FaxAnalytics". This tab contains the full guide on how to use the prefab.

In a nutshell:

1. Create a Google Form.
2. Create a pre-filled URL for your form.
3. Modify the URL to auto-submit as soon as it's opened. (The prefab editor window has a

tool to automaticall do this for you!)
4. Insert the URL into a video player.
5. Keep the video player disabled until you'd like the URL to be opened. (The prefab has

some tools for this, too).

... That's it! If you'd like to add your own analytics without my prefab, all you really need is a video
player.

Contact me via Discord, at Fax#6041 or faxmashine.com.

Questions?

http://faxmashine.com

Prefabs

When players fall from a great height, they ragdoll and make a sound.

https://drive.google.com/file/d/16sCyf2Ffc62x-7QZSgCvf_1WhOzdiGVe/

UdonSharp
Lack of sanity
<20 player world cap

Drag the prefab into your world, configure the settings, done. You can configure the minimum fall
height, and the sound that plays when a player falls. Post your favorite death sound in the
comments!! Mine's "oof" ����

This prefab was made at 3 AM

FaxFallDamage

Jank alert! This prefab uses the very obscure and obsolete VRChat combat system. Use at
your own risk! It probably won't work with more than 20 players.

Download

Requirements

How to use

https://drive.google.com/file/d/16sCyf2Ffc62x-7QZSgCvf_1WhOzdiGVe/view?usp=sharing

Here's some things which I consider good practice when writing U# code, in no particular order.
These suggestions are somewhat personal, so please let me know what you think in the comments
below the article! ❤️

By default, the sync mode of an UdonBehaviour is chosen in the Unity inspector. Which is fine, until
you accidently set it to the wrong sync mode. Yikes!

Instead, use U#'s UdonSyncMode attribute to make sure your UdonBehaviour always uses the sync
mode you want.

If you make one of your variables public , it'll be accessible from the Unity inspector. It'll also make
it accessible from any other UdonBehaviour . Most variables aren't accessed outside their own class,
so making variables public makes your classes needlessly messy.

UdonSharp Nitpicks
I hope you enjoy reading this - but keep in mind that this isn't quite finished ✌️

UdonSyncMode

using UdonSharp;

using UnityEngine;

[UdonBehaviourSyncMode(BehaviourSyncMode.Manual)]

public class Foo : UdonSharpBehaviour

{

 // ...

}

This will prevent you from changing the sync mode on different GameObjects reusing the
same U# script.
But... does anyone actually do that? ��

[SerializeField]

https://github.com/MerlinVR/UdonSharp/wiki/UdonSharp#udonsyncmode=

The solution? Keep those variables private instead, and just add [SerializeField] like so:

U# scripts can have long and messy inspectors. Why not make them look nicer with the [Header]
and [Tooltip] attributes?

If you're doing something with Networking.LocalPlayer frequently, consider caching the reference in
start:

... and re-using that reference instead of calling Networking.LocalPlayer directly.

[SerializeField] private string foo;

You can also do the opposite: To hide a public variable from the inspector, use
[HideInInspector].

[Tooltip] and [Header]

[Header("References")]

[Tooltip("Reference to the mirror GameObject.")]

[SerializeField] private GameObject mirror;

[Tooltip("Transform to move the mirror to.")]

[SerializeField] private Transform targetTransform;

Cache your LocalPlayer

private VRCPlayerApi localPlayer;

private void Start()

{

 localPlayer = Networking.LocalPlayer;

}

private void Update()

{

 Debug.Log(localPlayer.GetPosition();

}

https://docs.unity3d.com/ScriptReference/SerializeField.html
https://docs.unity3d.com/ScriptReference/HeaderAttribute.html
https://docs.unity3d.com/ScriptReference/TooltipAttribute.html

When the owner of a script uses RequestSerialization() , all players except the owner will execute
OnDeserialization() . But if you override OnDeserialization() in your script, you can have the
owner call it manually. This is useful if you'd like the owner of the script to execute
OnDeserialization() , to replicate the same behaviour as remote clients.

For example, here is a simple script which the master can use to increase a score variable. The
scoreText is updated for everyone in OnDeserialization .

The approach above works fine for simple scripts. However, if you script has multiple synced
variables, your OnDeserialization() method may become quite large. Consider using
[FieldChangeCallback] with a Property instead. It is similar to the Udon Graph's OnVariableChanged
node. For example:

OnDeserialization() and
[FieldChangeCallback]

Call OnDeserialization as owner

[UdonSynced] private int score;

[SerializeField] private TextMeshProUGUI scoreText;

// The script owner can call IncreaseScore anywhere to increase the score by 1.

public void IncreaseScore()

{

 score++;

 RequestSerialization();

 OnDeserialization()

}

public override void OnDeserialization()

{

 scoreText.text = score.ToString();

}

[FieldChangeCallback] instead of
OnDeserialization()

If you have multiple networked variables, watch out when using [FieldChangeCallback] . When a
[FieldChangeCallback] happens, other networked variables may not be updated yet. In other
words, if your networked variables depend on each other, you may want use OnDeserialization()
instead.

Notably, the owner of the script will not suffer from this issue. If you're seeing no issues as an
object's owner, but outdated variables on remote clients, you may be running into issues with
[FieldChangeCallback] 's execution order!

[UdonSynced, FieldChangeCallback(nameof(Score))] private int score;

private bool Score

{

 get => score;

 set

 {

 score = value;

 scoreText.text = score.ToString();

 }

}

[SerializeField] private TextMeshProUGUI scoreText;

public void IncreaseScore()

{

 Score++;

 RequestSerialization();

}

[FieldChangeCallback] execution order
issues

I've lost a lot of time identifying this issue. Please learn from my mistakes! ��

What else?

There's more I'd like to write about... Let me know if any of these sound interesting! ��

Avoid Update(), use delayed events instead.
Did you know that FixedUpdate() depends on your monitor's refresh rate? Yeah.
Use synced variables, avoid networked events, if you can.
FieldChangeCallback is great.
Name your classes and methods properly.

